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Predators can impact prey via predation or risk effects, which can initiate
trophic cascades. Given widespread population declines of apex predators,
understanding and predicting the associated ecological consequences is a
priority. When predation risk is relatively unpredictable or uncontrollable
by prey, the loss of predators is hypothesized to release prey from stress;
however, there are few tests of this hypothesis in the wild. A well-studied
predator–prey system between white sharks (Carcharodon carcharias) and
Cape fur seals (Arctocephalus pusillus pusillus) in False Bay, South Africa,
has previously demonstrated elevated faecal glucocorticoid metabolite
concentrations (fGCMs) in seals exposed to high levels of predation risk
from white sharks. A recent decline and disappearance of white sharks
from the system has coincided with a pronounced decrease in seal fGCM
concentrations. Seals have concurrently been rafting further from shore
and over deeper water, a behaviour that would have previously rendered
them vulnerable to attack. These results show rapid physiological and
behavioural responses by seals to release from predation stress. To our
knowledge, this represents the first demonstration in the wild of physiologi-
cal changes in prey from predator decline, and such responses are likely to
increase given the scale and pace of apex predator declines globally.
1. Background
Apex predators can alter food webs through direct mortality on prey [1] and via
risk effects that can induce plastic and/or genetic alterations in prey traits,
including changes in prey behaviour [2,3], morphology [4], life history [5]
and physiology [6]. Such risk effects can also initiate trophic cascades [7].
Understanding and predicting the ecological consequences of apex predator
declines are central to ecology and important for conservation management
given widespread apex predator declines globally, coupled with significant
efforts to restore their numbers [8,9].

The control of risk hypothesis [10] predicts that proactive responses by prey to
predictable and controllable aspects of risk will generally result in prey forfeiting
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food for safety, while reactive responses to unpredictable or
uncontrollable aspects of predation risk will generally result
in prey suffering physiological stress. Thus, the loss of apex pre-
dators is expected to release prey from predator-induced stress
(i.e. predation stress release) in some (but not all) circumstances,
but no prior empirical evidence of such a phenomenon exists in
the wild. Predator–prey interactions involving white sharks
Carcharodon carcharias and Cape fur seals Arctocephalus pusillus
pusillus have been extensively studied in the waters off South-
western Africa (e.g. [11–13]). More than two decades of
monitoring shark–seal interactions at Seal Island in False Bay
have revealed unusually clear-cut spatial and temporal vari-
ation in predation risk to seals from white sharks [14–18].
Here, seals exhibit a pronounced stress response to high levels
of unpredictable and relatively uncontrollable risk of attack
from white sharks as measured through elevated faecal
glucocorticoid concentrations (fGCMs) ([19], see electronic sup-
plementary material). These physiological stress responses
have been detected in both adults and juvenile seals, with
a strong positive correlation between fGCM levels and
weekly variation in white shark attack rate [19]. While white
shark abundance at Seal Island was relatively stable for a long
period, their numbers began to precipitously decline after
2015 [20]. While the reasons for the decline are still unknown,
this provides an unparalleled opportunity to test the
physiological responses of seals to the loss of their predator.

Here, we tested for hypothesized predation stress release in
seals at Seal Island, following the decline and disappearance of
white sharks from the system. First, we evaluated white shark
relative abundance and predatory activity at Seal Island from
2000 to 2020 (including 5 years after the decline: [20]).
Second, we collected seal scat samples and compared fGCMs
in the years prior to and following the decline of white
sharks. Third, we tested if seal faecal cortisol levels, inclusive
of the years following shark decline, were correlated with
attack rates on seals. Furthermore, we tested whether fGCM
concentrations were associated with spatial and temporal vari-
ation in environmental factors measured at the site. Finally, we
evaluated for potential changes in seal antipredator behaviour
following the decline of white sharks from the system that
would also be indicative of predation stress release.
2. Methods
(a) Study system
Seal Island (34.1374°S, 18.5825°E) is an island rookery in False
Bay, South Africa, that is inhabited by over 60 000 Cape fur
seals exhibiting high site fidelity [21,22]. During colder months
(winter: May through September), white sharks patrol the
waters around Seal Island to actively hunt Cape fur seals that
leave and return to the island to forage [15,23].

Around the island’s perimeter, seals often enter the water to
cool down and/or play in large groups, which is referred to as
rafting behaviour [24]. During high predation risk periods, raft-
ing seals remain close to the island’s edge [17], where depths
are shallow, and thus seals are relatively safe from attack
from below [14,25] and can also quickly exit the water if a
white shark is detected.
(b) Boat-based surveys
Between 2000 and 2020, white shark relative abundance and
predatory activity during winter months at Seal Island were
monitored from standardized boat-based observation surveys
(described in [20]; electronic supplementary material). Water
temperatures (°C) were recorded using the vessel’s onboard
temperature sensor, and the following environmental variables
were estimated: percentage cloud cover, wind speed (kt) and
direction, swell height (m) and water visibility (m). Additionally,
the relative distances of rafting seal groups from the Island’s per-
imeter were estimated according to one of three distance
categories: (i) seals rafting less than 5 m from the island, (ii)
seals rafting more than 5 m and less than 10 m from the island
and (iii) seals rafting more than 10 m from the island perimeter.

Between 07.00 and 09.30 h, instances of predation by white
sharks on Cape fur seals were recorded following the approach
outlined in [18] (see also electronic supplementary material).
The duration of each observational period along with the
number of predatory attacks by sharks on seals during this
period were recorded to calculate white shark predation rates
(i.e. number of predation events per hour). After 09.30 h, the
vessel anchored and conducted standardized boat-based baited
surveys of white sharks (following [20]; see electronic sup-
plementary material). The number of different individual
sharks observed per hour during these baited surveys
was calculated as a metric of relative white shark abundance.

(c) Seal faecal sample collection and immunoassay
Seal faecal samples were collected from Seal Island during 2014
and 2015 prior to the onset of shark decline (see [19]) and during
the decline and eventual disappearance of white sharks from the
study site in 2016, 2017 and 2019 (see electronic supplementary
material). Steroid hormone metabolites were extracted from
faecal samples by drying the scat and boiling a known mass of
dry faeces in ethanol following [26]. Glucocorticoid metabolite
concentrations in faecal extracts (fGCM) were analysed as detailed
in [19] and measured using an enzyme-linked immunoassay with
a cortisol antibody (Enzo Life Sciences ADI-900-071; see electronic
supplementary material for procedural validation).

(d) Statistical analysis
Previous analyses applied to annual trends in white shark rela-
tive abundance data at the study site, collected between 2000
and 2018, revealed a significant change point in 2015, after
which (2016 onwards) white shark relative abundance began to
decline precipitously [20]. Therefore, we classified the period
prior to shark decline as the years 2000 to 2015 and the
post-decline period as years 2016 through 2020.

To examine annual trends in white shark relative abundance
and predation rates across the 2000–2020 time series, we calcu-
lated the mean number of white sharks sighted per hour and
the mean number of shark predations per hour, for each year,
following the approach of [20]. To compare changes in seal
behaviour in relation to white shark relative abundance and
predatory activity, we evaluated annual trends in seal rafting dis-
tance from the island by calculating the mean daily rafting
category for each year.

To compare seal stress responses to annual trends in white
shark relative abundance and predatory activity, we calculated
mean fGCM concentrations by sampling year and by period
(pre-decline versus post-decline of white sharks).

Previous laboratory studies that have subjected sea lions
(Eumetopias jubatus) to an adrenocorticotropic hormone (ACTH)
challenge found a lag of up to 4 days between ACTH injection
and peak fGCM [27]. Accordingly, here we considered that
measured fGCM values reflected hormone values in seals
based on stress experienced within the week prior. Indeed, Ham-
merschlag et al. [19] found a very strong correlation between seal
fGCM concentrations and mean predation rates (attacks/h)
measured within the week prior to scat collections. Accordingly,
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here we used Spearman correlation to test for a correlation
between weekly shark attack rates and associated fGCM concen-
trations spanning the pre- and post-decline period. We also
separately tested for correlations of seal fGCM levels against
water temperature, wind speed, swell height, water visibility
and cloud cover. As in our analysis of the correlation between
fGCM with predation rates, we used mean values of the environ-
mental variables recorded during the previous week and up to
the day of scat sampling in this analysis.

Because white sharks only actively prey on seals at Seal
Island during winter months, we restricted analyses to data col-
lected from May to September, such that all data reflected seal
behaviour and physiology during the season in which seals his-
torically experienced high predation risk. All statistical analyses
were performed in SAS with p < 0.05 used as a threshold for
strong evidence of an effect.
Lett.18:20210476
3. Results
Between 2000 and 2020, a total of 4351 white shark sightings
were made during 2790.2 h of standardized observational
surveys that occurred during cold months (May through
September). Extension of the previous time series from 2018
to 2020 demonstrated that the decline in white shark numbers
at Seal Island that began in 2016 continued through 2020
(figure 1a). The last white shark sighting at Seal Island
during this survey occurred on 7 August 2018; since then,
there have been 78 trips to Seal Island in which no white
sharks were seen in 181.3 h of standardized observations.
Between 2000 and 2020, a total of 8007 predations by white
sharks on Cape fur seals were recorded during 3006.1 h of
standardized observation. Consistent with the trend in
shark abundance, the predation rate continued to decline
through 2020 (figure 1b). The last predation event at Seal
Island during this survey was recorded on 23 July 2018.
Annual trends in seal rafting distance to the Island exhibited
relatively little variation in the pre-decline period (2000–
2015), with rafting generally restricted to within 5 m of the
Island perimeter (rafting category 1); however, in 2016, seals
rafting distance from the Island began to increase during
the post-decline period, peaking in the most recent years
coinciding with the disappearance of white sharks in our sur-
veys (figure 1c).

One-hundred twenty-five scat samples were collected
during the period of shark decline and disappearance, with
individual fGCM concentrations in scats ranging from a
maximum value of 3372.1 ng g−1 (recorded during the pre-
decline period) to a minimum value of 87.8 ng g−1 (recorded
during the post-decline period). Annual mean fGCM concen-
trations measured during the pre-decline period were
between 6.3 and 2.3 times higher than annual mean concen-
trations measured in the post-decline period (figure 2a).
Mean (±s.e.) fGCM concentration during the pre-decline
period was 1864.8 ± 82.9 ng g−1 (N = 66), 4.2 times higher
than the post-decline period (445.5 ± 51.6 ng g−1, N = 59).
On six occasions in which scat samples were collected from
Seal Island, white shark predatory activity was also moni-
tored during the week prior. Mean weekly predation rates
ranged from a maximum of 3.76 attacks/h (pre-decline
period) to a minimum of 0 attacks/h (post-decline period).
Spearman correlation revealed a strong linear correlation
between mean fGCM concentrations and mean weekly pre-
dation rates (r = 0.94, p = 0.005; figure 2b). By contrast, mean
fGCM concentrations were not correlated with mean
weekly values of water temperature (r =−0.54, 0.27), wind
speed (r = 0.35, p = 0.5), swell height (r =−0.54, p = 0.27),
water visibility (r = 0.26, p = 0.62) and cloud cover (r = 0.03,
p = 0.96).
4. Discussion
Historically, Cape fur seals exposed to risk of white shark
attack at Seal Island in False Bay exhibited a pronounced
physiological stress response, as measured by fGCM concen-
trations ([19]; electronic supplementary material). However,
numbers of white sharks began to decline precipitously in
2016, leading to the complete disappearance of this apex
predator from the site. Here, we found that physiological
stress levels in seals have since diminished more than four-
fold on average. Following the disappearance of white
sharks, fGCM concentrations are now closely comparable to
levels at seal colonies that are not subjected to white shark
predation [19].

The decline in white shark numbers and associated
decline in seal stress levels have coincided with seal behav-
ioural changes indicative of predation stress release,
including seals rafting over deeper water, further from the
Island, a behaviour that would have historically exposed
seals to risk of shark attack. Taken together, these results
suggest relatively rapid physiological and behavioural
responses in seals due to release from risk of predation.

Chronic glucocorticoid secretion has been found to nega-
tively impact reproduction and survival [28–30]. Indeed,
previous research has revealed that acute and chronic physio-
logical stress experienced by fur seals can result in death [31].
Therefore, the drop in fGCM levels and changes in behaviour
may have positive fitness consequences, which could in turn
have consequences for their population dynamics, though
such effects are notoriously difficult to parse out from the
concurrent decrease in direct predation.

High population density or crowding can impact glucocor-
ticoid stress responses in animals. In theory, changes in the seal
population size may contribute to some of the variation in
glucocorticoid secretion measured here; for example, if there
was a yet undocumented decline in seal population size at
Seal Island. However, such a decline in recent years would be
incongruous with the release of predation pressure reported
here; moreover, changes in seal population size would not
explain the strong correlation found between measured seal
fGCM levels and weekly shark predation rates. Our previous
research has also found no correlations between seal colony
density or population size and fGCM levels [19]. While we
cannot rule out that some unmeasured variable could be con-
tributing in part to the pre- versus post-decline differences in
seal stress levels, various environmental factors measured
here (swell height, water temperature, visibility, cloud cover)
were not correlated with fGCM concentrations. Our findings
and interpretations are strengthened by coherency among
results over time, scale and types of data, inclusive of seal
rafting distance from the Island.

The reasons for the white shark decline from Seal Island
remain unknown [20]. Regardless, the data presented here
suggest a physiological response in seals due to predator
release. In the absence of white sharks, sevengill sharks
(Notorynchus cepedianus) have taken up residency at Seal
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Island [20]. Sevengill sharks are known to scavenge on seal
carcasses [32]. While there has been a single observation of
a sevengill shark attacking a sick seal at Seal Island [20],
the emergence of this shark species does not appear to
have induced a physiological stress response in seals, as
might be expected if they were frequently attacking healthy
seals. Thus, from an ecological standpoint, this suggests a
lack of functional trophic redundancy between white sharks
and sevengill sharks, despite both being apex predators in
the region.
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5. Conclusion
Here, we found that the rapid decline and disappearance of
white sharks from Seal Island have led to physiological and
behavioural responses in seals, probably due to predation
release, including a pronounced decrease in seal fGCM con-
centrations. To our knowledge, this represents the first
demonstration in the wild of a physiological response by
prey to the loss of an apex predator. However, such physio-
logical responses are likely pervasive as apex predators are
among the most threatened vertebrates on the planet [8,9].
Given that changes in glucocorticoids can have fitness and
reproductive consequences [28–30], understanding how
alterations in these and other stress responses manifest in
prey due to widespread declines of apex predators is an
important area of future research.

Ethics. Observational surveys and seal faecal sample collections were
conducted under authorization and permits from the Department
of Forestry, Fisheries and the Environment (DFFE), South Africa.
Data accessibility. The data and description of the data associated with
this study are available from the Dryad Digital Repository [33]:
https://doi.org/10.5061/dryad.jwstqjq9r// https://datadryad.org/
stash/share/_Y_Rjs_DdmKxor3N_VMBIWGvi1Bu7ZEv2qxCNzJ
SHo0.
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